Variable viscosity and density biofilm simulations using an immersed boundary method, part II: Experimental validation and the heterogeneous rheology-IBM

نویسندگان

  • Jay A. Stotsky
  • Jason F. Hammond
  • Leonid Pavlovsky
  • Elizabeth J. Stewart
  • John G. Younger
  • Michael J. Solomon
  • David M. Bortz
چکیده

The goal of this work is to develop a numerical simulation that accurately captures the biomechanical response of bacterial biofilms and their associated extracellular matrix (ECM). In this, the second of a two-part effort, the primary focus is on formally presenting the heterogeneous rheology Immersed Boundary Method (hrIBM) and validating our model against experimental results. With this extension of the Immersed Bounadry Method (IBM), we use the techniques originally developed in Part I, (Hammond et al. [15]) to treat the biofilm as a viscoelastic fluid possessing variable rheological properties anchored to a set of moving locations (i.e., the bacteria locations). We validate our modeling approach from Part I by comparing dynamic moduli and compliance moduli computed from our model to data from mechanical characterization experiments on Staphylococcus epidermidis biofilms. The experimental setup is described in Pavlovsky et al. (2013) [22] in which biofilms are grown and tested in a parallel plate rheometer. Matlab code used to produce results in this paper will be available at https://github.com/MathBioCU/BiofilmSim.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatially Heterogeneous Biofilm Simulations using an Immersed Boundary Method with Lagrangian Nodes Defined by Bacterial Locations

In this work we consider how surface-adherent bacterial biofilm communities respond in flowing systems. We simulate the fluid-structure interaction and separation process using the immersed boundary method. In these simulations we model and simulate different density and viscosity values of the biofilm than that of the surrounding fluid. The simulation also includes breakable springs connecting...

متن کامل

Immersed Boundary Method for Variable Viscosity and Variable Density Problems Using Fast Constant-Coefficient Linear Solvers I: Numerical Method and Results

We present a general variable viscosity and variable density immersed boundary method that is first-order accurate in the variable density case and, for problems possessing sufficient regularity, second-order accurate in the constant density case. The viscosity and density are considered material properties and are defined by a dynamically updated tesselation. Empirical convergence rates are re...

متن کامل

Immersed Boundary Method for Variable Viscosity and Variable Density Problems Using Fast Constant-Coefficient Linear Solvers II: Theory

We analyze the stability and convergence of first-order accurate and second-order accurate timestepping schemes for the Navier-Stokes equations with variable viscosity. These schemes are characterized by a mixed implicit/explicit treatment of the viscous term, in which a numerical parameter, λ, determines the degree of splitting between the implicit and explicit contributions. The reason for th...

متن کامل

Effect of Cilia Beat Frequency on Muco-ciliary Clearance

Background: The airway surface liquid (ASL), which is a ï‌‚uid layer coating the interior epithelial surface of the bronchi and bronchiolesis, plays an important defensive role against foreign particles and chemicals entering lungs.Objective: Numerical investigation has been employed to solve two-layer model consisting of mucus layer as a viscoelastic fluid and periciliary liquid layer as a New...

متن کامل

Effects of Viscosity Variations on Buoyancy-Driven Flow from a Horizontal Circular Cylinder Immersed in Al2O3-Water Nanofluid

The buoyancy-driven boundary-layer flow from a heated horizontal circular cylinder immersed in a water-based alumina (Al2O3) nanofluid is investigated using variable properties for nanofluid viscosity. Two different viscosity models are utilized to evaluate heat transfer enhancement from a cylinder. Exact analytic solutions of the problem are attained employing a novel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 317  شماره 

صفحات  -

تاریخ انتشار 2016